Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
Transbound Emerg Dis ; 69(5): e3060-e3075, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1937992

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has a worldwide distribution in humans and many other mammalian species. In late September 2021, 12 animals maintained by the Chicago Zoological Society's Brookfield Zoo were observed with variable clinical signs. The Delta variant of SARS-CoV-2 was detected in faeces and nasal swabs by qRT-PCR, including the first detection in animals from the families Procyonidae and Viverridae. Test positivity rate was 12.5% for 35 animals tested. All animals had been vaccinated with at least one dose of a recombinant vaccine designed for animals and all recovered with variable supportive treatment. Sequence analysis showed that six zoo animal strains were closely correlated with 18 human SARS-CoV-2 strains, suggestive of potential human-to-animal transmission events. This report documents the expanding host range of COVID-19 during the ongoing pandemic.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , COVID-19/epidemiology , COVID-19/veterinary , Disease Outbreaks , Humans , Pandemics/prevention & control , SARS-CoV-2/genetics , Viverridae
2.
Gigascience ; 112022 05 18.
Article in English | MEDLINE | ID: covidwho-1853072

ABSTRACT

BACKGROUND: The masked palm civet (Paguma larvata) acts as an intermediate host of severe acute respiratory syndrome coronavirus (SARS-CoV), which caused SARS, and transfered this virus from bats to humans. Additionally, P. larvata has the potential to carry a variety of zoonotic viruses that may threaten human health. However, genome resources for P. larvata have not been reported to date. FINDINGS: A chromosome-level genome assembly of P. larvata was generated using PacBio sequencing, Illumina sequencing, and Hi-C technology. The genome assembly was 2.44 Gb in size, of which 95.32% could be grouped into 22 pseudochromosomes, with contig N50 and scaffold N50 values of 12.97 Mb and 111.81 Mb, respectively. A total of 21,582 protein-coding genes were predicted, and 95.20% of the predicted genes were functionally annotated. Phylogenetic analysis of 19 animal species confirmed the close genetic relationship between P. larvata and species belonging to the Felidae family. Gene family clustering revealed 119 unique, 243 significantly expanded, and 58 significantly contracted genes in the P. larvata genome. We identified 971 positively selected genes in P. larvata, and one known human viral receptor gene PDGFRA is positively selected in P. larvata, which is required for human cytomegalovirus infection. CONCLUSIONS: This high-quality genome assembly provides a valuable genomic resource for exploring virus-host interactions. It will also provide a reliable reference for studying the genetic bases of the morphologic characteristics, adaptive evolution, and evolutionary history of this species.


Subject(s)
Genome , Viverridae , Animals , Chromosomes , Genomics , Phylogeny , Viverridae/genetics
3.
J Appl Anim Welf Sci ; 25(2): 167-179, 2022.
Article in English | MEDLINE | ID: covidwho-1806028

ABSTRACT

This research explores the intersection between zoonosis and the trade in wild animals by applying the Asian palm civet (Paradoxurus hermaphroditus) as a lens through which to analyse the ways humans and animals shape, and are shaped by, multi-species entanglements. Civets occupy a unique space within contemporary human-animal relations, as they have become an increasingly popular companion species despite being vectors of severe acute respiratory syndrome (SARS) coronavirus. The 2002 SARS outbreak not only killed 774 humans, but its confirmed species origin instigated the retribution-like public slaughter of an estimated 10,000 civets. Guided by the theory of "contamination", this paper compares human-civet relations during SARS and COVID-19 outbreaks through content analysis of global news media and the social media activity of "Civet Lover" clubs, dedicated social spaces for civet pet keeping enthusiasts. Results show that amidst the COVID-19 pandemic, the civet pet trade is thriving with considerable implications for humans and animals. This paper argues for the exotic pet trade to receive greater monitoring and regulation, for compromised animal welfare and health could present the opportunity for further disease emergence.


Subject(s)
COVID-19 , Severe acute respiratory syndrome-related coronavirus , Animals , COVID-19/veterinary , Humans , Pandemics , Phylogeny , Viverridae , Zoonoses/epidemiology
4.
Transbound Emerg Dis ; 69(5): e3250-e3254, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1774903

ABSTRACT

We conducted an exploratory serological survey to evaluate the exposure of Bornean wild carnivores to several viruses common to domestic felids, at interface areas between protected forest and industrial agriculture in the Kinabatangan floodplain (Sabah, Malaysia). Blood samples, collected from wild carnivores (n = 21) and domestic cats (n = 27), were tested for antibodies against feline coronavirus (FCoV), feline panleukopenia virus (FPLV), feline herpesvirus (FHV) and feline calicivirus (FCV), using commercial enzyme-linked immunosorbent assay (ELISA) test kits. Anti-FCoV antibodies were detected in most species, including one flat-headed cat (Prionailurus planiceps, [1/2]), leopard cats (Prionailurus bengalensis, [2/5]), Malay civets (Viverra tangalunga, [2/11]) and domestic cats (Felis catus, [2/27]). Anti-FCV antibodies were present in all domestic cats and one flat-headed cat, while anti-FPLV antibodies were identified in Sunda clouded leopards (Neofelis diardi, [2/2]), domestic cats [12/27] and Malay civets [2/11]. Anti-FHV antibodies were only detected in domestic cats [2/27]. Our findings indicate pathogen transmission risk between domestic and wild carnivore populations at the domestic animal-wildlife interface, emphasizing the concern for wildlife conservation for several endangered wild carnivores living in the area. Special consideration should be given to species that benefit from their association with humans and have the potential to carry pathogens between forest and plantations (e.g., Malay civets and leopard cats). Risk reduction strategies should be incorporated and supported as part of conservation actions in human-dominated landscapes.


Subject(s)
Carnivora , Cat Diseases , Felidae , Animals , Animals, Domestic , Animals, Wild , Antibodies, Viral , Cats , Feline Panleukopenia Virus , Humans , Viverridae
6.
Infect Genet Evol ; 93: 104933, 2021 09.
Article in English | MEDLINE | ID: covidwho-1237810

ABSTRACT

A severe respiratory pneumonia COVID-19 has raged all over the world, and a coronavirus named SARS-CoV-2 is blamed for this global pandemic. Despite intensive research into the origins of the COVID-19 pandemic, the evolutionary history of its agent SARS-CoV-2 remains unclear, which is vital to control the pandemic and prevent another round of outbreak. Coronaviruses are highly recombinogenic, which are not well handled with alignment-based method. In addition, deletions have been found in the genomes of several SARS-CoV-2, which cannot be resolved with current phylogenetic methods. Therefore, the k-mer natural vector is proposed to explore hosts and transmission traits for SARS-CoV-2 using strict phylogenetic reconstruction. SARS-CoV-2 clustering with bat-origin coronaviruses strongly suggests bats to be the natural reservoir of SARS-CoV-2. By building bat-to-human transmission route, pangolin is identified as an intermediate host, and civet is predicted as a possible candidate. We speculate that SARS-CoV-2 undergoes cross-species recombination between bat and pangolin coronaviruses. This study also demonstrates transmission mode and features of SARS-CoV-2 in the COVID-19 pandemic when it broke out early around the world.


Subject(s)
COVID-19/transmission , Host-Pathogen Interactions , Phylogeny , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Animals , Biological Evolution , COVID-19/epidemiology , China , Chiroptera/virology , Coronavirus/genetics , Genome, Viral , Pangolins/virology , Spike Glycoprotein, Coronavirus/genetics , Viral Zoonoses/transmission , Viverridae/virology
7.
Virus Res ; 295: 198307, 2021 04 02.
Article in English | MEDLINE | ID: covidwho-1032672

ABSTRACT

Bats carry diverse severe acute respiratory syndrome-related coronaviruses (SARSr-CoVs). The suspected interspecies transmission of SARSr-CoVs from bats to humans has caused two severe CoV pandemics, the SARS pandemic in 2003 and the recent COVID-19 pandemic. The receptor utilization of SARSr-CoV plays the key role in determining the host range and the interspecies transmission ability of the virus. Both SARS-CoV and SARS-CoV-2 use angiotensin-converting enzyme 2 (ACE2) as their receptor. Previous studies showed that WIV1 strain, the first living coronavirus isolated from bat using ACE2 as its receptor, is the prototype of SARS-CoV. The receptor-binding domain (RBD) in the spike protein (S) of SARS-CoV and WIV1 is responsible for ACE2 binding and medicates the viral entry. Comparing to SARS-CoV, WIV1 has three distinct amino acid residues (442, 472, and 487) in its RBD. This study aimed at exploring whether these three residues could alter the receptor utilization of SARSr-CoVs. We replaced the three residues in SARS-CoV (BJ01 strain) S with their counterparts in WIV1 S, and then evaluated the change of their utilization of bat, civet, and human ACE2s using a lentivirus-based pseudovirus infection system. To further validate the S-ACE2 interactions, the binding affinity between the RBDs of these S proteins and the three ACE2s were verified by flow cytometry. The results showed that the single amino acid substitution Y442S in the RBD of BJ01 S enhanced its utilization of bat ACE2 and its binding affinity to bat ACE2. On the contrary, the reverse substitution in WIV1 S (S442Y) significantly attenuated the pseudovirus utilization of bat, civet and human ACE2s for cell entry, and reduced its binding affinity with the three ACE2s. These results suggest that the S442 is critical for WIV1 adapting to bats as its natural hosts. These findings will enhance our understanding of host adaptations and cross-species infections of coronaviruses, contributing to the prediction and prevention of coronavirus epidemics.


Subject(s)
Angiotensin-Converting Enzyme 2/physiology , COVID-19/transmission , Chiroptera/virology , Host Specificity , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry , Animals , Binding Sites , Cells, Cultured , Humans , Virus Internalization , Viverridae/virology
8.
MEDICC Rev ; 22(4): 81-82, 2020 10.
Article in English | MEDLINE | ID: covidwho-1008394

ABSTRACT

Despite fast-tracked research, the precise origin, transmission and evolution of COVID-19 are still unknown. While the bat genus Rhinolophus is likely the primary source of the zoonotic-origin pathogen SARS-CoV-2 that causes COVID-19, its transmission route into the human population is still being studied.[1,2] Coronaviruses (CoV) affect humans and various animal species. Bats were the original hosts of the CoV that causes Severe Acute Respiratory Syndrome (SARS-CoV) and Middle East Respiratory Syndrome coronavirus (MERS-CoV), for example, with masked palm civet cats and dromedaries, respectively, the intermediate hosts of those two viruses. Research is ongoing regarding intermediate species for SARS-CoV-2, but one possibility is the large stray cat and dog population around the live animal market in Wuhan, China, where the pandemic is thought to have started.


Subject(s)
Animals, Domestic/virology , Animals, Wild/virology , Animals , Camelus/virology , Cats/virology , Chiroptera/virology , Dogs/virology , Ferrets/virology , Humans , Mink/virology , Viverridae/virology
9.
MEDICC Rev ; 22(4): 81-82, 2020 10.
Article in English | MEDLINE | ID: covidwho-958634

ABSTRACT

Despite fast-tracked research, the precise origin, transmission and evolution of COVID-19 are still unknown. While the bat genus Rhinolophus is likely the primary source of the zoonotic-origin pathogen SARS-CoV-2 that causes COVID-19, its transmission route into the human population is still being studied.[1,2] Coronaviruses (CoV) affect humans and various animal species. Bats were the original hosts of the CoV that causes Severe Acute Respiratory Syndrome (SARS-CoV) and Middle East Respiratory Syndrome coronavirus (MERS-CoV), for example, with masked palm civet cats and dromedaries, respectively, the intermediate hosts of those two viruses. Research is ongoing regarding intermediate species for SARS-CoV-2, but one possibility is the large stray cat and dog population around the live animal market in Wuhan, China, where the pandemic is thought to have started.


Subject(s)
Animals, Domestic/virology , Animals, Wild/virology , Animals , Camelus/virology , Cats/virology , Chiroptera/virology , Dogs/virology , Ferrets/virology , Humans , Mink/virology , Viverridae/virology
10.
Cell Death Dis ; 11(9): 799, 2020 09 24.
Article in English | MEDLINE | ID: covidwho-796027

ABSTRACT

A severe upper respiratory tract syndrome caused by the new coronavirus has now spread to the entire world as a highly contagious pandemic. The large scale explosion of the disease is conventionally traced back to January of this year in the Chinese province of Hubei, the wet markets of the principal city of Wuhan being assumed to have been the specific causative locus of the sudden explosion of the infection. A number of findings that are now coming to light show that this interpretation of the origin and history of the pandemic is overly simplified. A number of variants of the coronavirus would in principle have had the ability to initiate the pandemic well before January of this year. However, even if the COVID-19 had become, so to say, ready, conditions in the local environment would have had to prevail to induce the loss of the biodiversity's "dilution effect" that kept the virus under control, favoring its spillover from its bat reservoir to the human target. In the absence of these appropriate conditions only abortive attempts to initiate the pandemic could possibly occur: a number of them did indeed occur in China, and probably elsewhere as well. These conditions were unfortunately present at the wet marked in Wuhan at the end of last year.


Subject(s)
Betacoronavirus/pathogenicity , Coronavirus Infections/epidemiology , Pandemics , Pneumonia, Viral/epidemiology , Severe Acute Respiratory Syndrome/epidemiology , Severe acute respiratory syndrome-related coronavirus/pathogenicity , Spike Glycoprotein, Coronavirus/metabolism , Angiotensin-Converting Enzyme 2 , Animals , Betacoronavirus/classification , Betacoronavirus/genetics , COVID-19 , Chiroptera/virology , Coronavirus Infections/transmission , Eutheria/virology , Humans , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , Phylogeny , Pneumonia, Viral/transmission , Protein Binding , Severe acute respiratory syndrome-related coronavirus/classification , Severe acute respiratory syndrome-related coronavirus/genetics , SARS-CoV-2 , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism , Severe Acute Respiratory Syndrome/transmission , Severity of Illness Index , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Viverridae/virology
11.
Open Vet J ; 10(2): 164-177, 2020 08.
Article in English | MEDLINE | ID: covidwho-724486

ABSTRACT

Viruses are having great time as they seem to have bogged humans down. Severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS), and novel coronavirus (COVID-19) are the three major coronaviruses of present-day global human and animal health concern. COVID-19 caused by SARS-CoV-2 is identified as the newest disease, presumably of bat origin. Different theories on the evolution of viruses are in circulation, yet there is no denying the fact that the animal source is the skeleton. The whole world is witnessing the terror of the COVID-19 pandemic that is following the same path of SARS and MERS, and seems to be more severe. In addition to humans, several species of animals are reported to have been infected with these life-threatening viruses. The possible routes of transmission and their zoonotic potentialities are the subjects of intense research. This review article aims to overview the link of all these three deadly coronaviruses among animals along with their phylogenic evolution and cross-species transmission. This is essential since animals as pets or food are said to pose some risk, and their better understanding is a must in order to prepare a possible plan for future havoc in both human and animal health. Although COVID-19 is causing a human health hazard globally, its reporting in animals are limited compared to SARS and MERS. Non-human primates and carnivores are most susceptible to SARS-coronavirus and SARS-CoV-2, respectively, whereas the dromedary camel is susceptible to MERS-coronavirus. Phylogenetically, the trio viruses are reported to have originated from bats and have special capacity to undergo mutation and genomic recombination in order to infect humans through its reservoir or replication host. However, it is difficult to analyze how the genomic pattern of coronaviruses occurs. Thus, increased possibility of new virus-variants infecting humans and animals in the upcoming days seems to be the biggest challenge for the future of the world. One health approach is portrayed as our best way ahead, and understanding the animal dimension will go a long way in formulating such preparedness plans.


Subject(s)
Betacoronavirus/classification , Coronavirus Infections/veterinary , Middle East Respiratory Syndrome Coronavirus/classification , Pandemics/veterinary , Pneumonia, Viral/veterinary , Severe Acute Respiratory Syndrome/veterinary , Severe acute respiratory syndrome-related coronavirus/classification , Animals , Animals, Wild , Betacoronavirus/genetics , COVID-19 , Camelids, New World/virology , Camelus/virology , Cats , Chiroptera/virology , Coronavirus Infections/immunology , Coronavirus Infections/transmission , Disease Susceptibility/veterinary , Dogs , Eutheria/virology , Ferrets/virology , Humans , Lions/virology , Middle East Respiratory Syndrome Coronavirus/genetics , Phylogeny , Pneumonia, Viral/immunology , Pneumonia, Viral/transmission , Primates/virology , Raccoon Dogs/virology , Severe acute respiratory syndrome-related coronavirus/genetics , SARS-CoV-2 , Severe Acute Respiratory Syndrome/immunology , Severe Acute Respiratory Syndrome/transmission , Snakes/virology , Tigers/virology , Viverridae/virology
12.
Emerg Microbes Infect ; 9(1): 1567-1579, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-707709

ABSTRACT

Diverse SARS-like coronaviruses (SL-CoVs) have been identified from bats and other animal species. Like SARS-CoV, some bat SL-CoVs, such as WIV1, also use angiotensin converting enzyme 2 (ACE2) from human and bat as entry receptor. However, whether these viruses can also use the ACE2 of other animal species as their receptor remains to be determined. We report herein that WIV1 has a broader tropism to ACE2 orthologs than SARS-CoV isolate Tor2. Among the 9 ACE2 orthologs examined, human ACE2 exhibited the highest efficiency to mediate the infection of WIV1 pseudotyped virus. Our findings thus imply that WIV1 has the potential to infect a wide range of wild animals and may directly jump to humans. We also showed that cell entry of WIV1 could be restricted by interferon-induced transmembrane proteins (IFITMs). However, WIV1 could exploit the airway protease TMPRSS2 to partially evade the IFITM3 restriction. Interestingly, we also found that amphotericin B could enhance the infectious entry of SARS-CoVs and SL-CoVs by evading IFITM3-mediated restriction. Collectively, our findings further underscore the risk of exposure to animal SL-CoVs and highlight the vulnerability of patients who take amphotericin B to infection by SL-CoVs, including the most recently emerging (SARS-CoV-2).


Subject(s)
Betacoronavirus/physiology , Chiroptera/virology , Membrane Proteins/metabolism , Peptidyl-Dipeptidase A/metabolism , RNA-Binding Proteins/metabolism , Receptors, Virus/metabolism , Serine Endopeptidases/metabolism , Virus Internalization , Angiotensin-Converting Enzyme 2 , Animals , Betacoronavirus/classification , HEK293 Cells , Humans , Rats , Receptors, Coronavirus , Severe acute respiratory syndrome-related coronavirus/physiology , Viverridae
13.
Cladistics ; 36(4): 374-379, 2020 08.
Article in English | MEDLINE | ID: covidwho-689132

ABSTRACT

In the rush to understand the coronaviruses that threaten human health, authors of many prominent papers have not performed phylogenetic analyses to the standard of the field today. Errors include faulty placement of the root of the phylogeny, outdated methods of reconstruction, poor taxon sampling, inappropriate emphasis on selected functional elements, and inadequate consideration of ambiguity. As a result, certain conclusions regarding the origin of human infections are not supported soundly or are wrong.


Subject(s)
COVID-19/prevention & control , Evolution, Molecular , Genome, Viral/genetics , Phylogeny , SARS-CoV-2/genetics , Animals , COVID-19/virology , Chiroptera/virology , Humans , Pangolins/virology , SARS-CoV-2/classification , SARS-CoV-2/physiology , Viverridae/virology
14.
J Virol ; 94(15)2020 07 16.
Article in English | MEDLINE | ID: covidwho-661225

ABSTRACT

The emergence of a novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), resulted in a pandemic. Here, we used X-ray structures of human ACE2 bound to the receptor-binding domain (RBD) of the spike protein (S) from SARS-CoV-2 to predict its binding to ACE2 proteins from different animals, including pets, farm animals, and putative intermediate hosts of SARS-CoV-2. Comparing the interaction sites of ACE2 proteins known to serve or not serve as receptors allows the definition of residues important for binding. From the 20 amino acids in ACE2 that contact S, up to 7 can be replaced and ACE2 can still function as the SARS-CoV-2 receptor. These variable amino acids are clustered at certain positions, mostly at the periphery of the binding site, while changes of the invariable residues prevent S binding or infection of the respective animal. Some ACE2 proteins even tolerate the loss or acquisition of N-glycosylation sites located near the S interface. Of note, pigs and dogs, which are not infected or are not effectively infected and have only a few changes in the binding site, exhibit relatively low levels of ACE2 in the respiratory tract. Comparison of the RBD of S of SARS-CoV-2 with that from bat coronavirus strain RaTG13 (Bat-CoV-RaTG13) and pangolin coronavirus (Pangolin-CoV) strain hCoV-19/pangolin/Guangdong/1/2019 revealed that the latter contains only one substitution, whereas Bat-CoV-RaTG13 exhibits five. However, ACE2 of pangolin exhibits seven changes relative to human ACE2, and a similar number of substitutions is present in ACE2 of bats, raccoon dogs, and civets, suggesting that SARS-CoV-2 may not be especially adapted to ACE2 of any of its putative intermediate hosts. These analyses provide new insight into the receptor usage and animal source/origin of SARS-CoV-2.IMPORTANCE SARS-CoV-2 is threatening people worldwide, and there are no drugs or vaccines available to mitigate its spread. The origin of the virus is still unclear, and whether pets and livestock can be infected and transmit SARS-CoV-2 are important and unknown scientific questions. Effective binding to the host receptor ACE2 is the first prerequisite for infection of cells and determines the host range. Our analysis provides a framework for the prediction of potential hosts of SARS-CoV-2. We found that ACE2 from species known to support SARS-CoV-2 infection tolerate many amino acid changes, indicating that the species barrier might be low. Exceptions are dogs and especially pigs, which revealed relatively low ACE2 expression levels in the respiratory tract. Monitoring of animals is necessary to prevent the generation of a new coronavirus reservoir. Finally, our analysis also showed that SARS-CoV-2 may not be specifically adapted to any of its putative intermediate hosts.


Subject(s)
Betacoronavirus/physiology , Coronavirus Infections/virology , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/virology , Spike Glycoprotein, Coronavirus/metabolism , Virus Attachment , Angiotensin-Converting Enzyme 2 , Animals , Animals, Domestic , Betacoronavirus/metabolism , COVID-19 , Chiroptera/virology , Coronavirus Infections/metabolism , Dogs , Glycosylation , Host-Pathogen Interactions , Humans , Models, Animal , Pandemics , Pets , Pneumonia, Viral/metabolism , Protein Binding , Protein Conformation , Protein Interaction Domains and Motifs , Raccoons/virology , SARS-CoV-2 , Sequence Alignment , Sequence Analysis, Protein , Swine , Viverridae/virology
15.
Vopr Virusol ; 65(1): 6-15, 2020.
Article in Russian | MEDLINE | ID: covidwho-533952

ABSTRACT

Results of analysis of phylogenetic, virological, epidemiological, ecological, clinical data of COVID-19 outbreaks in Wuhan, China (PRC) in comparison with SARS-2002 and MERS-2012 outbreaks allow to conclude: - the etiological agent of COVID-19 is coronavirus (2019-CoV), phylogenetically close to the SARS-CoV, isolated from human, and SARS-related viruses isolated from bats (SARS-related bat CoV viruses). These viruses belong to the Sarbecovirus subgenus, Betacoronavirus genus, Orthocoronavirinae subfamily, Coronaviridae family (Cornidovirinea: Nidovirales). COVID-19 is a variant of SARS-2002 and is different from MERS-2012 outbreak, which were caused by coronavirus belonged to the subgenus Merbecovirus of the same genus; - according to the results of phylogenetic analysis of 35 different betacoronaviruses, isolated from human and from wild animals in 2002-2019, the natural source of COVID-19 and SARS-CoV (2002) is bats of Rhinolophus genus (Rhinolophidae) and, probably, some species of other genera. An additional reservoir of the virus could be an intermediate animal species (snakes, civet, hedgehogs, badgers, etc.) that are infected by eating of infected bats. SARS-like coronaviruses circulated in bats in the interepidemic period (2003-2019); - seasonal coronaviruses (subgenus Duvinacovirus, Alphacoronavirus) are currently circulating (November 2019 - January 2020) in the European part of Russia, Urals, Siberia and the Far East of Russia, along with the influenza viruses A(H1N1)pdm09, A(H3N2), and В, as well as six other respiratory viruses (HPIV, HAdV, HRSV, HRV, HBoV, and HMPV).


Subject(s)
Betacoronavirus/classification , Coronavirus Infections/epidemiology , Pandemics , Phylogeny , Pneumonia, Viral/epidemiology , Respiratory Tract Infections/epidemiology , Animals , Betacoronavirus/genetics , Betacoronavirus/pathogenicity , COVID-19 , China/epidemiology , Chiroptera/virology , Coronavirus Infections/diagnosis , Coronavirus Infections/physiopathology , Coronavirus Infections/transmission , Disease Reservoirs/virology , Epidemiological Monitoring , Hedgehogs/virology , Humans , Mustelidae/virology , Pneumonia, Viral/diagnosis , Pneumonia, Viral/physiopathology , Pneumonia, Viral/transmission , Public Health/statistics & numerical data , Respiratory Tract Infections/diagnosis , Respiratory Tract Infections/physiopathology , Respiratory Tract Infections/transmission , Russia/epidemiology , SARS-CoV-2 , Snakes/virology , Viverridae/virology
16.
Vet Q ; 40(1): 169-182, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-244904

ABSTRACT

Coronavirus disease 2019 (COVID-19), has spread over 210 countries and territories beyond China shortly. On February 29, 2020, the World Health Organization (WHO) denoted it in a high-risk category, and on March 11, 2020, this virus was designated pandemic, after its declaration being a Public Health International Emergency on January 30, 2020. World over high efforts are being made to counter and contain this virus. The COVID-19 outbreak once again proves the potential of the animal-human interface to act as the primary source of emerging zoonotic diseases. Even though the circumstantial evidence suggests the possibility of an initial zoonotic emergence, it is too early to confirm the role of intermediate hosts such as snakes, pangolins, turtles, and other wild animals in the origin of SARS-CoV-2, in addition to bats, the natural hosts of multiple coronaviruses such as SARS-CoV and MERS-CoV. The lessons learned from past episodes of MERS-CoV and SARS-CoV are being exploited to retort this virus. Best efforts are being taken up by worldwide nations to implement effective diagnosis, strict vigilance, heightened surveillance, and monitoring, along with adopting appropriate preventive and control strategies. Identifying the possible zoonotic emergence and the exact mechanism responsible for its initial transmission will help us to design and implement appropriate preventive barriers against the further transmission of SARS-CoV-2. This review discusses in brief about the COVID-19/SARS-CoV-2 with a particular focus on the role of animals, the veterinary and associated zoonotic links along with prevention and control strategies based on One-health approaches.


Subject(s)
Betacoronavirus/classification , Coronavirus Infections/transmission , Coronavirus Infections/veterinary , Disease Reservoirs/virology , One Health , Pandemics/veterinary , Pneumonia, Viral/transmission , Pneumonia, Viral/veterinary , Zoonoses/transmission , Animals , Betacoronavirus/pathogenicity , COVID-19 , Camelus , Cats , Chiroptera , Coronavirus Infections/prevention & control , Coronavirus Infections/virology , Dogs , Eutheria , Ferrets , Humans , Macaca mulatta , Models, Animal , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Pneumonia, Viral/virology , SARS-CoV-2 , Snakes , Tigers , Viral Vaccines , Virus Shedding , Viverridae , World Health Organization , Zoonoses/virology
17.
J Med Virol ; 92(10): 2105-2113, 2020 10.
Article in English | MEDLINE | ID: covidwho-209797

ABSTRACT

Coronavirus disease-2019 (COVID-19) outbreak due to novel coronavirus or severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has come out as a major threat for mankind in recent times. It is continually taking an enormous toll on mankind by means of increasing number of deaths, associated comorbidities, and socioeconomic loss around the globe. Unavailability of chemotherapeutics/vaccine has posed tremendous challenges to scientists and doctors for developing an urgent therapeutic strategy. In this connection, the present in silico study aims to understand the sequence divergence of spike protein (the major infective protein of SARS-CoV-2), its mode of interaction with the angiotensin-converting enzyme-2 receptor (ACE2) receptor of human and related animal hosts/reservoir. Moreover, the involvement of the human Toll-like receptors (TLRs) against the spike protein has also been demonstrated. Our data indicated that the spike glycoprotein of SARS-CoV-2 is phylogenetically close to bat coronavirus and strongly binds with ACE2 receptor protein from both human and bat origin. We have also found that cell surface TLRs, especially TLR4 is most likely to be involved in recognizing molecular patterns from SARS-CoV-2 to induce inflammatory responses. The present study supported the zoonotic origin of SARS-CoV-2 from a bat and also revealed that TLR4 may have a crucial role in the virus-induced inflammatory consequences associated with COVID-19. Therefore, selective targeting of TLR4-spike protein interaction by designing competitive TLR4-antagonists could pave a new way to treat COVID-19. Finally, this study is expected to improve our understanding on the immunobiology of SARS-CoV-2 and could be useful in adopting spike protein, ACE2, or TLR-guided intervention strategy against COVID-19 shortly.


Subject(s)
Alphacoronavirus/chemistry , Angiotensin-Converting Enzyme 2/chemistry , Receptors, Virus/chemistry , SARS-CoV-2/chemistry , Spike Glycoprotein, Coronavirus/chemistry , Toll-Like Receptors/chemistry , Alphacoronavirus/classification , Alphacoronavirus/metabolism , Alphacoronavirus/pathogenicity , Angiotensin-Converting Enzyme 2/classification , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Animals , Binding Sites , COVID-19/immunology , COVID-19/virology , Chiroptera/immunology , Chiroptera/virology , Data Mining , Eutheria/immunology , Eutheria/virology , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Humans , Models, Molecular , Phylogeny , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Receptors, Virus/classification , Receptors, Virus/genetics , Receptors, Virus/metabolism , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/classification , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Thermodynamics , Toll-Like Receptors/classification , Toll-Like Receptors/genetics , Toll-Like Receptors/metabolism , Viverridae/immunology , Viverridae/virology
19.
Virus Res ; 283: 197976, 2020 07 02.
Article in English | MEDLINE | ID: covidwho-46070

ABSTRACT

An outbreak of atypical pneumonia caused by a novel Betacoronavirus (ßCoV), named SARS-CoV-2 has been declared a public health emergency of international concern by the World Health Organization. In order to gain insight into the emergence, evolution and adaptation of SARS-CoV-2 viruses, a comprehensive analysis of genome composition and codon usage of ßCoV circulating in China was performed. A biased nucleotide composition was found for SARS-CoV-2 genome. This bias in genomic composition is reflected in its codon and amino acid usage patterns. The overall codon usage in SARS-CoV-2 is similar among themselves and slightly biased. Most of the highly frequent codons are A- and U-ending, which strongly suggests that mutational bias is the main force shaping codon usage in this virus. Significant differences in relative synonymous codon usage frequencies among SARS-CoV-2 and human cells were found. These differences are due to codon usage preferences.


Subject(s)
Betacoronavirus/classification , Betacoronavirus/genetics , Codon Usage/genetics , Communicable Diseases, Emerging/virology , Gene Expression Regulation, Viral/genetics , Genome, Viral/genetics , Genomics , Amino Acids/genetics , Animals , Betacoronavirus/isolation & purification , China/epidemiology , Chiroptera/virology , Coronavirus Infections/epidemiology , Coronavirus Infections/veterinary , Coronavirus Infections/virology , Evolution, Molecular , Ferrets/virology , Humans , Mutagenesis/genetics , Open Reading Frames/genetics , SARS-CoV-2 , Viverridae/virology
SELECTION OF CITATIONS
SEARCH DETAIL